Saturday, May 30, 2015

Indian Statistical Institute B.Math & B.Stat : Number Theory

Indian Statistical Institute : Number Theory Find the digit at the unit place of \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )}\] First note that \( k! \equiv 0 (mod\ 10) \) for all $k \geq 5 , k \in \mathbb{N}$ $$$$ So, \( 5!-6!+7!-\dots \dots +25! \equiv 0 (mod\ 10) \) and \( 1!-2!+3!-4! = -19 \equiv 1 (mod\ 10)\) (Using the property of $congruences$). $$$$ Using the above two congruences \( \big(1!-2!+3!-\dots \dots +25!\big ) \equiv 1 (mod\ 10) \) $$$$ So, \[\big(1!-2!+3!-\dots \dots +25!\big )^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1^{\big(1!-2!+3!-\dots \dots +25!\big )} \equiv 1 (mod 10) \] giving $1$ as the last digit. $$$$ Let \(a \equiv a' (mod\ m) \) and \(b \equiv b' (mod\ m)\), then important properties of $congruences$ include the following, where $\implies$ means "implies": $$$$ 1. Reflexivity: $a\equiv a (mod- m)$. $$$$ 2. Symmetry: \(a\equiv b (mod\ m) \implies b\equiv a (mod\ m)\).$$$$ 3. Transitivity: \(a\equiv b (mod\ m)\) and \(b \equiv c (mod\ m)\implies a\equiv c (mod\ m)\). $$$$ 4. \(a+b \equiv a'+b' (mod\ m)\)$$$$ 5. \(a-b\equiv a'-b' (mod\ m)\). $$$$ 6. \(ab\equiv a'b' (mod\ m)\). $$$$ 7. \(a\equiv b (mod\ m)\implies ka \equiv kb (mod\ m)\). $$$$ 8. \(a\equiv b (mod\ m)\implies a^n\equiv b^n (mod\ m)\). $$$$ 9. \(ak\equiv bk (mod\ m)\implies\) \(a\equiv b \big(mod\ \frac{m}{(k,m)}\big),\) where $(k,m)$ is the greatest common divisor. $$$$ 11. If $a \equiv b (mod\ m)$, then $P(a) \equiv P(b) (mod\ m)$, for $P(x)$ a polynomial with integer coefficients.

No comments:

Post a Comment

google.com, pub-6701104685381436, DIRECT, f08c47fec0942fa0